

Available online at www.sciencedirect.com

Tetrahedron Letters

Tetrahedron Letters 47 (2006) 3919-3922

Photochemical behaviors of tetraphenyldiphosphine in the presence of alkynes

Shin-ichi Kawaguchi, Shoko Nagata, Takamune Shirai, Kaname Tsuchii, Akihiro Nomoto and Akiya Ogawa*

Department of Applied Chemistry, Faculty of Engineering, Osaka Prefecture University, 1-1 Gakuen-cho, Nakaku Sakai, Osaka 599-8531, Japan

> Received 6 February 2006; revised 16 March 2006; accepted 24 March 2006 Available online 24 April 2006

Abstract—Under an atmosphere of nitrogen, the photoinduced reaction of tetraphenyldiphosphine (1) with alkynes (2) generates vicinal bisphosphinated alkenes (3) as air-sensitive compounds, which can be isolated by treatment with elemental sulfur. A novel E to Z isomerization of 3 is revealed to take place upon continuous photoirradiation. © 2006 Elsevier Ltd. All rights reserved.

Radical addition of heteroatom compounds to carboncarbon unsaturated bonds based on the photoinduced homolytic cleavage of heteroatom-heteroatom single bonds is one of the most useful and highly atom-economical methods for selective introduction of heteroatom functions into organic molecules.¹ Recently, we have disclosed novel photoinduced bisselenation² and bistelluration³ of alkynes with organic diselenides and ditellurides, which provide a useful tool to vicinal bisseleno- and bistelluroalkenes, respectively (Eqs. 1 and 2).

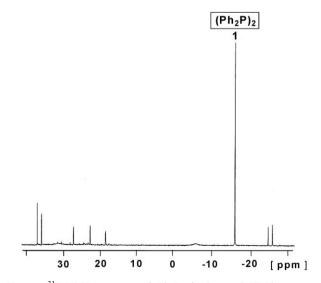
$$R \longrightarrow + (PhSe)_2 \longrightarrow R \xrightarrow{R} SePh$$
(1)

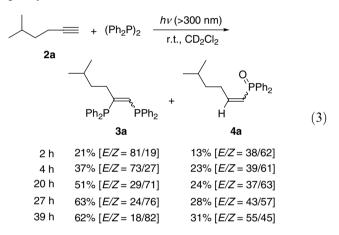
$$R \longrightarrow + (PhTe)_2 \longrightarrow PhTe^{TePh}$$
(2)

However, similar transformations concerning group 15 heteroatom compounds have been largely unexplored.^{4,5} In this letter, we wish to report detailed experiments, which have been done to develop the photoinduced bisphosphination of alkynes by using tetraphenyldiphosphine as the representative heteroatom compounds bearing a group 15 heteroatom–heteroatom linkage.⁶

Tetraphenyldiphosphine $(Ph_2P-PPh_2, 1)^5$ is a commercially available white solid (mp 120–122 °C) and is stable in the solid state. However, in solvent, 1 is extremely airsensitive, generating immediately several oxidation products, which can be assigned unambiguously by measurement of their ³¹P NMR spectra.⁷ The use of degassed solvent is effective for depressing the undesirable air-oxidation of diphosphine 1 (ca. 70% of 1 is survived by this treatment, see Chart $1^{7,8}$), and makes it possible to study the reactions of 1.

Tetraphenyldiphosphine (1) exhibits its absorption maximum in 260 nm ($\varepsilon = 41.3$), and its absorption reaches to 330 nm.⁹ Therefore, the irradiation with the light of the wavelength in these regions (e.g., near-UV light irradiation) induces the homolytic cleavage of the P–P single




Chart 1. ³¹P NMR spectrum of (Ph₂P)₂ in degassed CDCl₃.

^{*} Corresponding author. Tel./fax: +81 72 254 9290; e-mail: ogawa@ chem.osakafu-u.ac.jp

^{0040-4039/\$ -} see front matter @ 2006 Elsevier Ltd. All rights reserved. doi:10.1016/j.tetlet.2006.03.165

bond of 1 to generate the corresponding phosphoruscentered radical as a label species.^{10,11} However, both the extremely high air-sensitivity of 1 and its lower solubility in organic solvents may contribute to the difficulty in realizing the radical addition of 1 to carbon–carbon unsaturated compounds.

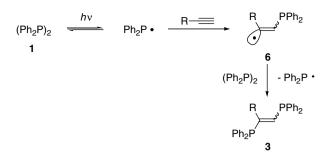
To accomplish the desired radical addition of diphosphine **1** to terminal alkynes, the reaction was conducted in an NMR tube sealed carefully under nitrogen atmosphere by using degassed solvent. In an NMR tube ($\phi = 4$ mm, Pyrex) filled with nitrogen, were placed tetraphenyldiphosphine (0.132 mmol, stored in Schlenck tube under nitrogen), 5-methyl-1-hexyne (**2a**, 0.044 mmol), and CD₂Cl₂ (0.6 mL, degassed), and then the tube was sealed. Irradiation with a xenon lamp (500 W) was conducted at room temperature, and the reaction was monitored by ¹H and ³¹P NMR using triphenylmethane as an internal standard for ¹H NMR.

As can be seen from Eq. 3, the photoinduced reaction of diphosphine 1 with 5-methyl-1-hexyne (2a) provided the corresponding bisphosphination product (3a) as the major product, along with small amounts of hydrophos-

Table 1. Photoinduced bisphosphination of alkynes

phinylation product (4a). The yield of 3a increased with the reaction times. On the other hand, the hydrophosphinylation product (4a) was formed within 4 h, most probably by the reaction of 2a with initially formed diphenylphosphine oxide (Ph₂P(O)H).¹²

Noteworthy is that isomerization from (*E*)-**3a** to (*Z*)-**3a** was observed to take place gradually: After the irradiation for 39 h, (*Z*)-**3a** was obtained mainly (*E*/*Z* = 18/82). These results clearly indicate that the present photo-induced bisphosphination is promising as a useful tool to (*Z*)-isomers of *vic*-bis(diphenylphosphino)alkenes. The stereochemistry of **3a** can be easily determined by measurement of ³¹P NMR: The coupling constant for (*E*)-**3a** (*J*_{P-P} = 340 Hz) is larger than that of (*Z*)-isomer (*J*_{P-P} = 161 Hz).


Similar conditions can be employed with 1-octyne (2b) and 5-chloro-1-pentyne (2c) (Table 1, entries 2–3). In these cases, the Z selectivity in the bisphosphination also increased with the prolonged photoirradiation. On the other hand, the bisphosphination of phenylacetylene proceeded very smoothly and provided only (Z)-isomer selectively (entry 4).¹³

Isolation of the bisphosphination product **3** was attempted by using preparative HPLC. However, the desired isolation of **3** failed, owing to the instability of **3** toward air. Thus, this letter deals with only spectral analyses of the bisphosphination products.¹⁴ Since the direct isolation of the bisphosphination product **3** is very difficult, the isolation was examined by the treatment of the bisphosphination product **3** with elemental sulfur. Purification by preparative TLC provided **5** in good yields, as shown in Table 1¹⁵.

A possible reaction pathway for the formation of bisphosphination product **3** is as follows (Scheme 1). Upon irradiation with near-UV light, tetraphenyldiphosphine

$R \longrightarrow + (Ph_2P)_2 \longrightarrow R \longrightarrow $						
	2		3	5		
Entry	Alkyne	Solv.	Time (h)	Yield (%) [E	Yield (%) $[E/Z]^{a}$	
				3	5	
1	→ 2a	CD_2Cl_2	39	62 [18/82]	54 [23/77]	
2	ⁿ Hex— —— 2b	C_6D_6	26	68 [35/65]	53 [34/66]	
3	Cl(CH ₂) ₃ -=== 2c	CD_2Cl_2	18	55 [42/58]	53 [53/47]	
4	Ph 2d	CD_2Cl_2	1	45 [0/100]	46 [50/50]	

^a One unidentified product (R–CH₂=CH–P(O)Ph₂, **4**) was also obtained as byproduct: 31% [E/Z = 55/45] (**4a**, entry 1); 24% [E/Z = 50/50] (**4b**, entry 2); 18% [E/Z = 67/33] (**4c**, entry 3); 8% [E/Z = 25/75] (**4d**, entry 4).

Scheme 1. A possible pathway for bisphosphination.

1 undergoes homolytic dissociation to generate Ph_2P , which attacks the terminal carbon of terminal alkynes to give the corresponding β -diphenylphosphino-substituted vinylic radical (6). The subsequent S_H2 reaction between the vinylic radical and the diphosphine 1 provides the bisphosphination product 3.

On the other hand, the formation of **4** can be explained by the addition to terminal alkynes, of diphenylphosphine oxide, which is formed at the initial stage from $(Ph_2P)_2$ and water (contaminated). This was strongly supported by the fact that the reaction of $(Ph_2P)_2$ with D_2O led to the formation of Ph_2PD and $Ph_2P(O)D$ upon photoirradiation.¹⁶ Furthermore, the formation of diphenylphosphine oxide was clearly accelerated in the presence of terminal alkynes, and this fact suggests that acetylenic proton can also be employed as a proton source for diphenylphosphine oxide.

In summary, we have disclosed the reactivity of tetraphenyldiphosphine upon photoirradiation conditions. Detailed mechanism of hydrophosphination and its synthetic utility are now under investigation.

Acknowledgment

We gratefully acknowledge Professor L.-B. Han (National Institute of Advanced Industrial Science and Technology (AIST)) for his useful suggestions.

References and notes

 (a) Ogawa, A. In Main Group Metals in Organic Synthesis; Yamamoto, H., Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; Vol. 2, p 813; (b) Ogawa, A.; Hirao, T. Rev. Heteroat. Chem. 1998, 18, 1; (c) Heiba, E. I.; Dessau, R. M. J. Org. Chem. 1967, 32, 3837; (d) Ogawa, A.; Tanaka, H.; Yokoyama, H.; Obayashi, R.; Yokoyama, K.; Sonoda, N. J. Org. Chem. 1992, 57, 111; (e) Ogawa, A.; Obayashi, R.; Ine, H.; Tsuboi, Y.; Sonoda, N.; Hirao, T. J. Org. Chem. 1998, 63, 881; (f) Ogawa, A.; Obayashi, R.; Sonoda, N.; Hirao, T. Tetrahedron Lett. 1998, 39, 1577; (g) Ogawa, A.; Obayashi, R.; Doi, M.; Sonoda, N.; Hirao, T. J. Org. Chem. 1998, 63, 4277; (h) Ogawa, A.; Ogawa, I.; Obayashi, R.; Umezu, K.; Doi, M.; Hirao, T. J. Org. Chem. 1999, 63, 86; (i) Toru, T.; Seko, T.; Maekawa, E. Tetrahedron Lett. 1985, 26, 3263; (j) Toru, T.; Kanefusa, T.; Maekawa, E. Tetrahedron Lett. 1986, 27, 1583; (k) Toru, T.; Seko, T.; Maekawa, E.; Ueno, Y. J. Chem. Soc., Perkin Trans. 1 1988, 575; (l) Toru, T.; Seko, T.; Maekawa, E.; Ueno, Y. J. Chem. Soc., Perkin Trans. 1 1989, 1927; (m) Back, T. G.; Brunner, K.; Krishna, M. V.; Lai, E. K. Y.; Muralidharan, K. R. In Heteroatom Chemistry; Block, E., Ed.; VCH: New York, 1990, Chapter 4; (n) Kang, Y.-H.; Kice, J. L. J. Org. Chem. 1984, 49, 1507; (o) Back, T. G.; Muralidharan, K. R. J. Org. Chem. 1989, 54, 121; (p) Back, T. G. Phosphorous Sulfur, Silicon, Relat. Elem. 1992, 67, 203.

- (a) Back, T. G.; Krishna, M. V. J. Org. Chem. 1988, 53, 2533; (b) Ogawa, A.; Yokoyama, K.; Yokoyama, H.; Sekiguchi, M.; Kambe, N.; Sonoda, N. Tetrahedron Lett. 1990, 31, 5931; (c) Ogawa, A.; Yokoyama, H.; Yokoyama, K.; Masawaki, T.; Kambe, N.; Sonoda, N. J. Org. Chem. 1991, 56, 5721; (d) Ogawa, A.; Takami, N.; Sekiguchi, M.; Yokoyama, H.; Kuniyasu, H.; Ryu, I.; Sonoda, N. Chem. Lett. 1991, 2241; (e) Ogawa, A.; Doi, M.; Ogawa, I.; Hirao, T. Angew. Chem., Int. Ed. 1999, 38, 2027; (f) Ogawa, A.; Doi, M.; Tsuchii, K.; Hirao, T. Tetrahedron Lett. 2001, 42, 2317; (g) Ogawa, A.; Ogawa, I.; Sonoda, N. J. Org. Chem. 2000, 65, 7682; (h) Tsuchii, K.; Doi, M.; Ogawa, I.; Einaga, Y.; Ogawa, A. Bull. Chem. Soc. Jpn. 2005, 78, 1534.
- (a) Ogawa, A.; Yokoyama, K.; Yokoyama, H.; Obayashi, R.; Kambe, N.; Sonoda, N. J. Chem. Soc., Chem. Commun. 1991, 1748; (b) Ogawa, A.; Yokoyama, K.; Obayashi, R.; Han, L.-B.; Kambe, N.; Sonoda, N. Tetrahedron 1993, 49, 1177.
- 4. (a) Kuchen, W.; Buchwald, H. Chem. Ber. 1958, 91, 2871;
 (b) Tzschach, V. A.; Baensch, S. J. Prakt. Chem. 1971, 313, 254; (c) Wong, S. K.; Sytnyk, W.; Wan, J. K. S. Can. J. Chem. 1971, 49, 994; (d) Davidson, R. S.; Sheldon, R. A.; Trippert, S. J. Chem. Soc. 1966, 722; (e) Hewertson, W.; Taylor, I. C. J. Chem. Soc. 1970, 1990.
- 5. Very recently, V-40-initiated bisphosphination of alkynes with tetraphenyldiphosphine (formed in situ from Ph₂PH and Ph₂PCl) is reported, which selectively provides *trans*isomers of vicinal bis(diphenylthiophosphanyl)alkenes after treatment with elemental sulfur: Sato, A.; Yorimitsu, H.; Oshima, K. *Angew. Chem., Int. Ed.* **2005**, *44*, 1694.
- 6. Our preliminary results of this photoinduced bisphosphination were presented at the 1st Pacific Symposium on Radical Chemistry (PSRC-1, November 15, 2004, Kanazawa, Japan).
- 7. For ³¹P NMR of 1 (Ph₂P)₂: δ –14.27 ppm, see: (a) Koster, R.; Schubler, W.; Synoradzki, L. *Chem. Ber.* **1987**, *120*, 1105; (b) Bohm, V. P. W.; Brookhart, M. *Angew. Chem., Int. Ed.* **2001**, 40, 4694; For ³¹P NMR of Ph₂PP(O)Ph₂: δ –23.12, 34.57 ppm, see: Irvine, D. J.; Glidewell, C.; Cole-Hamilton, D. J.; Barnes, J. C.; Howie, A. J. *Chem. Soc., Dalton Trans.* **1991**, 1765; For ³¹P NMR of Ph₂P(O)-P(O)Ph₂: δ 21.87 ppm, see: Zhao, N.; Neckers, D. C. J. *Org. Chem.* **2000**, 65, 2145; For ³¹P NMR of Ph₂P(O)OP(O)Ph₂: δ 26.04 ppm, see: Korth, H. G. J. *Org. Chem.* **1990**, 55, 624; For ³¹P NMR of Ph₂P(O)H: δ 17.99 ppm, see: Dabkowski, W.; Michalski, J.; Skrzypczynski, Z. J. *Chem. Soc., Chem. Commun.* **1982**, 1260; For ³¹P NMR of Ph₂P(O)OH: δ 31.45 ppm, see: Lukes, I.; Borbaruah, M.; Quin, L. D. J. Am. Chem. Soc. **1994**, *116*, 1737.
- Integral condition: Relaxation delay is 1 [s], acquisition time is 0.2312 [s]. Ratio of integral value is (Ph₂P)₂:Ph₂PP(O)-Ph₂:Ph₂P(O)P(O)Ph₂:Ph₂P(O)OP(O)Ph₂:Ph₂P(O)H = 70:8:5: 7:10.
- 9. Troy, D.; Turpin, R.; Voigt, D. Bull. Soc. Chim. Fr. 1979, 241.
- Davidson, R. S.; Sheldon, R. A.; Trippett, S. J. Chem. Soc., (C). 1966, 722.

- 11. In CDCl₃, diphosphine 1 was gradually decomposed to form chlorodiphenylphosphine (Ph₂PCl; ³¹P NMR δ 82.38 ppm; Appel, R.; Milker, R. *Chem. Ber.* 1975, *108*, 1783.) upon irradiation through Pyrex with a xenon lamp, whereas no conversion of 1 to Ph₂PCl was observed in CD₂Cl₂ and benzene. Thus, CD₂Cl₂ and benzene are suitable solvents for the reactions conducted under photo-irradiation conditions.
- 12. Semenzin, D.; Etemad-mogha, G.; Albouy, D.; Diallo, O.; Koenig, M. J. Org. Chem. **1997**, 62, 2414.
- 13. The exclusive Z selectivity observed in the bisphosphination of phenylacetylene may arise from the interaction between the alkyne and diphosphine in the ground or excited state.
- 14. ³¹P NMR (CD₂Cl₂), **3a**: For (*E*)-isomer, δ -30.1 ppm (d, J = 418 Hz), -14.35 ppm (d, J = 426 Hz); For (*Z*)-isomer, δ -25.20 ppm (d, J = 161 Hz), -6.02 ppm (d, J = 157 Hz). Compound **3b**: For (*E*)-isomer, δ -29.85 ppm (d, J = 300 Hz), -13.55 ppm (d, J = 300 Hz); For (*Z*)-isomer, δ -24.50 ppm (d, J = 157 Hz), -5.90 ppm (d, J = 161 Hz). Compound **3c**: For (*E*)-isomer, δ -30.3 ppm (d, J = 444 Hz), -14.35 ppm (d, J = 422 Hz); For (*Z*)-isomer, δ -24.80 ppm (d, J = 161 Hz), -6.75 ppm (d, J = 157 Hz). Compound **3d**: δ -24.55 ppm (d, J = 144 Hz), -3.51 ppm (d, J = 144 Hz).
- 15. Compound 5a: [(Z)-isomer] ¹H NMR (CDCl₃) δ 0.70 (d, J = 6.4 Hz, 6H), 1.19–1.47 (m, 3H), 2.34–2.39 (m, 2H), 6.96 (dd, J = 41.7, 12.4 Hz, 1H), 7.24–7.76 (m, 20H); ¹³C NMR (CDCl₃) δ 22.18, 27.86, 37.82, 39.75, 128.22, 128.32, 131.27 (d, J = 17.2 Hz), 131.27 (d, J = 4.7 Hz), 131.34 (d, J = 83.7 Hz), 132.37 (d, J = 16.3 Hz), 132.37 (d, J =5.7 Hz), 133.59 (d, J = 87.3 Hz), 134.88 (ddd, J = 82.5, 12.5, 11.5 Hz), 152.46 (d, J = 65.2 Hz); ³¹P NMR (CDCl₃) δ 32.11 (d, J = 17.4 Hz), 42.28 (d, J = 17.4 Hz); IR (NaCl, neat) 2952, 1436, 1097, 705, 692, 642 cm⁻¹; HRMS calcd for C31H32P2S2: 530.1421, found: 530.1418; Anal. Calcd for C₃₁H₃₂P₂S₂: C, 70.16; H, 6.08%. Found: C, 69.96; H, 6.04%. [(E)-isomer] ¹H NMR (CDCl₃) δ 0.46 (d, J = 5.0 Hz, 6H), 0.99–1.07 (m, 2H), 1.19–1.22 (m, 1H), 2.69-2.73 (m, 2H), 7.34 (dd, J = 27.0, 20.2 Hz, 1H), 7.40-7.84 (m, 20H); ¹³C NMR (CDCl₃) δ 21.75, 28.37, 29.05, 37.56, 128.62 (d, J = 9.5 Hz), 128.70 (d, J = 9.5 Hz), 131.04 (d, J = 7.6 Hz), 131.34 (d, J = 83.4 Hz), 131.54, 131.87, 132.26 (d, J = 9.5 Hz), 133.73 (d, J = 85.4 Hz), 136.36 (dt, J = 72.9, 9.6 Hz), 156.71 (d, J = 60.4 Hz); ³¹P NMR (CDCl₃) δ 28.60 (d, J = 61.0 Hz), 49.55 (d, J = 61.0 Hz); IR (NaCl, neat) 2954, 2358, 2341, 1436, 1099, 715, 692 cm⁻¹; **5b**: [(Z)-isomer] ¹H NMR (CDCl₃) δ 0.80 (t, J = 7.3 Hz, 3H), 1.21–1.23 (m, 6H), 1.54–1.60 (m, 2H), 2.34–2.41 (m, 2H), 6.94 (dd, *J* = 41.7, 12.7 Hz, 1H), 7.22-7.32 (m, 8H), 7.33-7.38 (m, 4H), 7.66-7.77 (m, 8H); ¹³C NMR (CDC1₃) δ 13.88, 22.37, 28.67, 30.57, 31.23, 39.65, 128.09 (d, J = 12.5 Hz), 128.32 (d, J = 12.5 Hz), 131.12 (d, J = 16.3 Hz), 131.12 (d, J = 4.8 Hz), 131.26 (d, J = 83.5 Hz), 132.28 (d, J = 15.6 Hz), 132.28 (d, J = 5.7 Hz), 133.59 (d, J = 86.3 Hz), 134.65 (ddd, J =81.5, 9.6, 7.7 Hz), 152.20 (d, J = 68.1 Hz);³¹P NMR $(CDC1_3) \delta 31.90 (d, J = 17.4 Hz), 42.28 (d, J = 17.4 Hz);$

IR (NaC1, neat) 2925, 1436, 1098, 693, 643 cm⁻¹; HRMS calcd for C₃₂H₃₄P₂S₂: 544.1577, found: 544.1573; Anal. Calcd for C₃₂H₃₄P₂S₂: C, 70.56; H, 6.29%. Found: C, 70.36; H, 6.27%. [(E)-isomer] ¹H NMR (CDCl₃) δ 0.71 (t, J = 7.3 Hz, 3H), 0.81–0.82 (m, 4H), 0.88–0.90 (m, 2H), 0.96-1.00 (m, 2H), 2.67-2.75 (m, 2H), 7.24 (dd, J = 27.1, 20.0 Hz, 1H), 7.39-7.50 (m, 10H), 7.51-7.53 (m, 2H), 7.75–7.81 (m, 8H); ¹³C NMR (CDC1₃) δ 13.77, 13.87, 22.15, 29.20, 29.30, 30.85, 128.53 (d, J = 14.4 Hz), 128.64 (d, J = 14.4 Hz), 130.92, 130.96 (d, J = 10.6 Hz), 131.19 (d, J = 83.4 Hz), 132.12 (d, J = 10.6 Hz), 132.23, 133.66 (d, J = 85.4 Hz), 135.93 (ddd, J = 72.9, 192.23, 152.66 (d, J = 85.4 Hz), 135.93 (ddd, J = 72.9, 19.2, 8.6 Hz), 156.38 (d, J = 59.5 Hz); ³¹P NMR (CDC1₃) δ 28.66 (d, J = 56.7 Hz), 49.58 (d, J = 61.0 Hz); IR (NaCl, neat) 3054, 2926, 2854, 1435, 1100, 717, 692, 629, 614, 527 cm⁻¹ Compound 5c: [(Z)-isomer] ¹H NMR (CDCl₃) δ 2.02–2.07 (m, 2H), 2.54–2.60 (m, 2H), 3.45 (t, J = 6.5 Hz, 2H), 7.00 (dd, J = 41.1, 12.8 Hz, 1H), 7.23–7.27 (m, 4H), 7.29–7.33 (m, 4H), 7.35–7.39 (m, 4H), 7.64–7.69 (m, 4H), 7.73–7.78 (m, 4H); ¹³C NMR (CDC1₃) δ 33.67, 37.47 (t like, J = 5.8 Hz), 43.84, 128.4 (d, J = 11.5 Hz), 128.5 (d, J =11.5 Hz), 130.91 (d, J = 83.5 Hz), 131.02 (d, J = 15.4 Hz), 131.02 (d, J = 4.6 Hz), 132.36 (d, J = 15.4 Hz), 132.37 (d, J = 6.7 Hz), 133.37 (d, J = 87.5 Hz), 136.10 (ddd, J = 79.6, 10.6, 6.7 Hz), 150.47 (d, J = 69.2 Hz); ³¹P NMR (CDC1₃) δ 31.62 (d, J = 17.4 Hz), 42.13 (d, J =17.4 Hz); IR (NaCl, neat) 3053, 1436, 1100, 910, 799, 692, 671, 613 cm⁻¹; HRMS calcd for $C_{29}H_{27}ClP_2S_2$: 536.0718, found: 536.0714. Anal. Calcd for C₂₉H₂₇ClP₂S₂: C, 64.86; H, 5.07%. Found: C, 63.99; H, 5.09%. [(E)-isomer] ¹H NMR (CDC1₃) δ 1.43–1.49 (m, 2H), 2.83–2.93 (m, 2H), 3.11 (t,J = 6.7 Hz, 2H), 7.33 (dd, J = 25.4, 6.4 Hz, 1H), 7.42-7.50 (m, 10H), 7.53-7.56 (m, 2H), 7.74-7.80 (m, 8H); ¹³C NMR (CDC1₃) δ 28.16 (t, J = 8.6 Hz), 31.97, 44.37 (t, J = 7.7 Hz), 128.83 (d, J = 12.5 Hz), 128.86 (d, J =12.5 Hz), 130.78 (d, J = 83.4 Hz), 130.98 (d, J = 10.5Hz), 131.79, 132.12, 132.22 (d, J = 7.7 Hz), 133.44 (d, J = 85.4 Hz), 137.14 (dt, J = 71.9, 8.6 Hz), 154.88 (d, J = 60.4 Hz); ³¹P NMR (CDC1₃) δ 28.42 (d, J = 56.7 Hz), 49.57 (d, J = 56.7 Hz); IR (NaCl, neat) 3053, 2330, 1437, 1099, 716, 691, 631, 613, 525, 496 cm⁻¹. Compound **5d**: [(Z)-isomer] ¹H NMR (CDCl₃) δ 7.10 (dd, J = 26.1, 12.4 Hz, 1H), 7.06–7.40 (m, 17H), 7.61–7.78 (m, 8H); ¹³C NMR (CDC1₃) δ 127.96, 128.04, 128.19 (d, J = 11.5 Hz), 130.92 (d, J = 7.7 Hz), 131.11 (d, J = 3.0 Hz), 131.57 (d, J = 15.3 Hz), 131.57 (d, J = 5.7 Hz), 131.76 (d, J = 85.4Hz), 131.95 (d, J = 17.2 Hz), 131.95 (d, J = 3.8 Hz), 132.69 (d, J = 87.3 Hz), 138.98 (ddd, J = 74.8, 11.5, 10.5 Hz), 141.89 (dd, J = 16.3, 10.5 Hz), 150.78 (d, J =69.0 Hz); ³¹P NMR (CDCl₃) δ 32.74 (d, J = 13.0 Hz), 38.38 (d, J = 13.0 Hz); IR (neat) 3053, 1436, 1097, 738, 717, 694, 644, 516 cm⁻¹; HRMS calcd for $C_{32}H_{26}P_2S_2$: 536.0951, found: 536.0955. Anal. Calcd for C₃₂H₂₆P₂S₂: C, 71.62; H, 4.88%. Found: C, 71.86; H, 5.12%.

 (a) Yasui, S.; Shioji, K.; Yoshihara, M.; Maeshita, T.; Ohno, A. *Bull. Chem. Soc. Jpn.* **1993**, *66*, 2077; (b) Renard, P.-Y.; Vayron, P.; Leclerc, E.; Valleix, A.; Miskowski, C. *Angew. Chem., Int. Ed.* **2003**, *42*, 2389.